Views Navigation

Event Views Navigation

Latest Past Events

Relaxing the I.I.D. Assumption: Adaptively Minimax Optimal Regret via Root-Entropic Regularization

online

Abstract: We consider sequential prediction with expert advice when data are generated from distributions varying arbitrarily within an unknown constraint set. We quantify relaxations of the classical i.i.d. assumption in terms of these constraint sets, with i.i.d. sequences at one extreme and adversarial mechanisms at the other. The Hedge algorithm, long known to be minimax optimal in the adversarial regime, was recently shown to be minimax optimal for i.i.d. data. We show that Hedge with deterministic learning rates is suboptimal…

On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning

online

Abstract: For many causal effect parameters of interest, doubly robust machine learning (DRML) estimators ψ̂ 1 are the state-of-the-art, incorporating the good prediction performance of machine learning; the decreased bias of doubly robust estimators; and the analytic tractability and bias reduction of sample splitting with cross fitting. Nonetheless, even in the absence of confounding by unmeasured factors, the nominal (1−α) Wald confidence interval ψ̂ 1±zα/2ˆ may still undercover even in large samples, because the bias of ψ̂ 1 may be of the same…

WiDS Cambridge 2021

Online

For the fifth year in a row, Harvard, MIT, Microsoft Research New England, and Broad Institute are proud to collaborate with Stanford University to bring the Women in Data Science (WiDS) conference to Cambridge, Massachusetts. ​This virtual, one-day technical conference will feature an all-female line up of speakers from academia and industry to talk about the latest data science-related research in a number of domains, to learn how leading-edge companies are leveraging data science for success, and to connect with potential mentors, collaborators,…


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility