Views Navigation

Event Views Navigation

Latest Past Events

Revealing the simplicity of high-dimensional objects via pathwise analysis

E18-304

Abstract: One of the main reasons behind the success of high-dimensional statistics and modern machine learning in taming the curse of dimensionality is that many classes of high-dimensional distributions are surprisingly well-behaved and, when viewed correctly, exhibit a simple structure. This emergent simplicity is in the center of the theory of "high-dimensional phenomena", and is manifested in principles such as "Gaussian-like behavior" (objects of interest often inherit the properties of the Gaussian measure), "dimension-free behavior" (expressed in inequalities which do…

Instance Dependent PAC Bounds for Bandits and Reinforcement Learning

E18-304

Abstract: The sample complexity of an interactive learning problem, such as multi-armed bandits or reinforcement learning, is the number of interactions with nature required to output an answer (e.g., a recommended arm or policy) that is approximately close to optimal with high probability. While minimax guarantees can be useful rules of thumb to gauge the difficulty of a problem class, algorithms optimized for this worst-case metric often fail to adapt to “easy” instances where fewer samples suffice. In this talk, I…


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility