Views Navigation

Event Views Navigation

Latest Past Events

Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity

32-123

Confidence sets play a fundamental role in statistical inference. In this paper, we consider confidence intervals for high dimensional linear regression with random design. We first establish the convergence rates of the minimax expected length for confidence intervals in the oracle setting where the sparsity parameter is given. The focus is then on the problem of adaptation to sparsity for the construction of confidence intervals. Ideally, an adaptive confidence interval should have its length automatically adjusted to the sparsity of…

Distributed Learning Dynamics Convergence in Routing Games

With the emergence of smartphone based sensing for mobility as the main paradigm for sensing in the last decade, radically new information sets have become available for the driving public. This information enables commuters to make repeated decisions on a daily basis based on anticipated state of the network. This repeated decision-making process creates interesting patterns for the transportation network, in which users might (or might not) reach an equilibrium, depending on the information at their disposal (for example knowing…


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility