Views Navigation

Event Views Navigation

Latest Past Events

Statistical theory for deep neural networks with ReLU activation function

E18-304

Abstract: The universal approximation theorem states that neural networks are capable of approximating any continuous function up to a small error that depends on the size of the network. The expressive power of a network does, however, not guarantee that deep networks perform well on data. For that, control of the statistical estimation risk is needed. In the talk, we derive statistical theory for fitting deep neural networks to data generated from the multivariate nonparametric regression model. It is shown…

When Inference is tractable

E18-304

Abstract:  A key capability of artificial intelligence will be the ability to reason about abstract concepts and draw inferences. Where data is limited, probabilistic inference in graphical models provides a powerful framework for performing such reasoning, and can even be used as modules within deep architectures. But, when is probabilistic inference computationally tractable? I will present recent theoretical results that substantially broaden the class of provably tractable models by exploiting model stability (Lang, Sontag, Vijayaraghavan, AI Stats ’18), structure in…

Statistical estimation under group actions: The Sample Complexity of Multi-Reference Alignment

E18-304

Abstract: : Many problems in signal/image processing, and computer vision amount to estimating a signal, image, or tri-dimensional structure/scene from corrupted measurements. A particularly challenging form of measurement corruption are latent transformations of the underlying signal to be recovered. Many such transformations can be described as a group acting on the object to be recovered. Examples include the Simulatenous Localization and Mapping (SLaM) problem in Robotics and Computer Vision, where pictures of a scene are obtained from different positions andorientations;…


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility