Views Navigation

Event Views Navigation

Latest Past Events

Topics in Information and Inference Seminar

32-D677

This seminar consists of a series of lectures each followed by a period of informal discussion and social. The topics are at the nexus of information theory, inference, causality, estimation, and non-convex optimization. The lectures are intended to be tutorial in nature with the goal of learning about interesting and exciting topics rather than merely hearing about the most recent results. The topics are driven by the interests of the speakers, and with the exception of the two lectures on…

Data Science and Big Data Analytics: Making Data-Driven Decisions

Developed by 10 MIT faculty members at IDSS, this seven-week course is specially designed for data scientists, business analysts, engineers and technical managers looking to learn strategies to harness data. Offered by MIT xPRO. Course begins Oct. 15, 2018.

Locally private estimation, learning, inference, and optimality

E18-304

Abstract: In this talk, we investigate statistical learning and estimation under local privacy constraints, where data providers do not trust the collector of the data and so privatize their data before it is even collected. We identify fundamental tradeoffs between statistical utility and privacy in such local models of privacy, providing instance-specific bounds for private estimation and learning problems by developing local minimax risks. In contrast to approaches based on worst-case (minimax) error, which are conservative, this allows us to…


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility