Views Navigation

Event Views Navigation

Latest Past Events

Counting and sampling at low temperatures

E18-304

Abstract: We consider the problem of efficient sampling from the hard-core and Potts models from statistical physics. On certain families of graphs, phase transitions in the underlying physics model are linked to changes in the performance of some sampling algorithms, including Markov chains. We develop new sampling and counting algorithms that exploit the phase transition phenomenon and work efficiently on lattices (and bipartite expander graphs) at sufficiently low temperatures in the phase coexistence regime. Our algorithms are based on Pirogov-Sinai…

Optimal Adaptivity of Signed-Polygon Statistics for Network Testing (Tracy Ke, Harvard University)

E18-304

Abstract: Given a symmetric social network, we are interested in testing whether it has only one community or multiple communities. The desired tests should (a) accommodate severe degree heterogeneity, (b) accommodate mixed-memberships, (c) have a tractable null distribution, and (d) adapt automatically to different levels of sparsity, and achieve the optimal detection boundary. How to find such a test is a challenging problem. We propose the Signed Polygon as a class of new tests. Fix m ≥ 3. For each…

Robust Estimation: Optimal Rates, Computation and Adaptation

E18-304

Abstract: Chao Gao will discuss the problem of statistical estimation with contaminated data. In the first part of the talk, I will discuss depth-based approaches that achieve minimax rates in various problems. In general, the minimax rate of a given problem with contamination consists of two terms: the statistical complexity without contamination, and the contamination effect in the form of modulus of continuity. In the second part of the talk, I will discuss computational challenges of these depth-based estimators. An…


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility